

Predictive Coding for Robot Cognition

Yukie Nagai NICT / Bielefeld University

Take Home Messages

- Predictive coding/learning is a powerful unified theory for designing cognitive mechanisms in robots.
 - Various dynamics of cognitive development can be reproduced based on the theory.
- Consciousness emerge as a byproduct of the development of cognition functions.
 - Cognitive behaviors require internal models which produce consciousness.

Underlying Mechanism?

Self cognition (from 24 mo) [Amsterdam, 1972; Povinelli et al., 1996]

Helping others (from 14 mo)

[Warneken & Tomasello, 2006]

Joint attention (from 12 mo)

[Butterworth & Jarrett, 1991] [Moore et al., 1996] [Brooks & Meltzoff, 2002]

Unified theory

Reading intention (from 6 mo)

[Woodward, 1998] [Gergely et al., 1995]

Imitation (from 0 mo)

[Meltzoff & Moore, 1977] [Heyes, 2001] Expressing emotion (from 6 mo)

[Bridges 1930; Lewis, 2007]

Our Hypothesis: Predictive Learning

[Nagai & Asada, IROS-WS 2015]

Minimization of prediction error e(t+1) leads to cognitive development during early infancy.

Our Hypothesis: Predictive Learning

[Nagai & Asada, IROS-WS 2015]

Minimization of prediction error e(t+1) leads to cognitive development during early infancy.

- (a) Update the predictor through sensorimotor experiences
 - → Self-other cognition, goal-directed action, etc.

- (b) Execute a predicted action in response to others' action
 - → Imitation, helping action, etc.

Multimodal Predictive Learning for Action Production and Perception

- Predictive learning to integrate multimodal signals enables infants to recall own motor experiences while observing others' action (i.e., mirror neuron system).
 - Motor learning: integrating
 visual v, tactile u, and motor m
 signals

Multimodal Predictive Learning for Action Production and Perception

- Predictive learning to integrate multimodal signals enables infants to recall own motor experiences while observing others' action (i.e., mirror neuron system).
 - Motor learning: integrating
 visual v, tactile u, and motor m
 signals
 - Action observation: generating imaginary u and m from actual
 v > better prediction of v

Results 1: Prediction of Others' Goal

Actual image

Predicted image

Predicted image	Classifications of prediction
4	Correct goal
	Incorrect goal
_	No goal

Input/output signals:

- Vision: camera image (30)
- Tactile: on/off (3)
- Motor: joint angles of shoulder and elbow (4)

[Copete, Nagai, & Asada, ICDL-EpiRob 2016]

Result 2: Motor Experience Improved Accuracy of Prediction

W/ motor experience

W/o motor experience (only observation)

Multimodal Predictive Learning for Emotion Imitation

- Emotion is perceived through inference of interoceptive and exteroceptive signals. [Seth et al., 2012]
- Predictive learning of multimodal signals enables infants to estimate and imitate others' emotion by putting themselves in others' shoes (i.e., mirror neuron system).

Prediction of Sensory Signals Improves the Estimation of Emotion

[Horii, Nagai, & Asada, Paladyn 2016]

Different Level of Consciousness in Autism Spectrum Disorder

What Letters Can You See?

S S S S S S SSSSSS SSS S S S

 People with ASD recognize the local letter quicker than the global letter. [Behrmann et al., 2006]

Difficulty in Feeling Hunger in ASD

• Feeling of hunger is hard to be recognized and requires conscious process of selecting and integrating proper sensory signals.

[Ayaya & Kumagaya, 2008]

- Equally perceive multimodal sensations
- 2. Enhance hunger-relevant signals while diminishing hunger-irrelevant signals
- Recognize hunger by integrating relevant signals

: likely relevant to hunger

: likely irrelevant to hunger

: limited to hunger

____:psychological

Schizophrenia-like Behaviors Generated by Modifications in Neural Network [Yamashita & Tani, 2012]

- Multiple timescale recurrent neural network (MTRNN)
 - Lower layer (fast context):
 behavioral primitives
 - Higher layer (slow context):
 combinations of primitives

Schizophrenia-like Behaviors Generated by Modifications in Neural Network [Yamashita & Tani, 2012]

- Multiple timescale recurrent neural network (MTRNN)
 - Lower layer (fast context):behavioral primitives
 - Higher layer (slow context):
 combinations of primitives

Atypical Visual Perception in ASD

Take Home Messages

- Predictive coding/learning is a powerful unified theory for designing cognitive mechanisms in robots.
 - Various dynamics of cognitive development can be reproduced based on the theory.
- Consciousness emerge as a byproduct of the development of cognition functions.
 - Cognitive behaviors require internal models which produce consciousness.
- Different levels of consciousness in ASD provide deeper insights into the roles of consciousness.

Thank You!

Osaka University

- Minoru Asada
- Jimmy Baraglia
- Takato Horii
- Shibo Qin
- Jorge L. Copete
- Konstantinos Theofilis
- Jyh-Jong Hsieh, et al.

University of Tokyo

- Shinichiro Kumagaya
- Satsuki Ayaya

yukie@nict.go.jp http://developmental-robotics.jp